Tuesday, 30 August 2016

Why Healthcare Companies should look towards Web Scraping

Why Healthcare Companies should look towards Web Scraping

The internet is a massive storehouse of information which is available in the form of text, media and other formats. To be competitive in this modern world, most businesses need access to this storehouse of information. But, all this information is not freely accessible as several websites do not allow you to save the data. This is where the process of Web Scraping comes in handy.

Web scraping is not new—it has been widely used by financial organizations, for detecting fraud; by marketers, for marketing and cross-selling; and by manufacturers for maintenance scheduling and quality control. Web scraping has endless uses for business and personal users. Every business or individual can have his or her own particular need for collecting data. You might want to access data belonging to a particular category from several websites. The different websites belonging to the particular category display information in non-uniform formats. Even if you are surfing a single website, you may not be able to access all the data at one place.

The data may be distributed across multiple pages under various heads. In a market that is vast and evolving rapidly, strategic decision-making demands accurate and thorough data to be analyzed, and on a periodic basis. The process of web scraping can help you mine data from several websites and store it in a single place so that it becomes convenient for you to a alyze the data and deliver results.

In the context of healthcare, web scraping is gaining foothold gradually but qualitatively. Several factors have led to the use of web scraping in healthcare. The voluminous amount of data produced by healthcare industry is too complex to be analyzed by traditional techniques. Web scraping along with data extraction can improve decision-making by determining trends and patterns in huge amounts of intricate data. Such intensive analyses are becoming progressively vital owing to financial pressures that have increased the need for healthcare organizations to arrive at conclusions based on the analysis of financial and clinical data. Furthermore, increasing cases of medical insurance fraud and abuse are encouraging healthcare insurers to resort to web scraping and data extraction techniques.

Healthcare is no longer a sector relying solely on person to person interaction. Healthcare has gone digital in its own way and different stakeholders of this industry such as doctors, nurses, patients and pharmacists are upping their ante technologically to remain in sync with the changing times. In the existing setup, where all choices are data-centric, web scraping in healthcare can impact lives, educate people, and create awareness. As people no more depend only on doctors and pharmacists, web scraping in healthcare can improve lives by offering rational solutions.

To be successful in the healthcare sector, it is important to come up with ways to gather and present information in innovative and informative ways to patients and customers. Web scraping offers a plethora of solutions for the healthcare industry. With web scraping and data extraction solutions, healthcare companies can monitor and gather information as well as track how their healthcare product is being received, used and implemented in different locales. It offers a safer and comprehensive access to data allowing healthcare experts to take the right decisions which ultimately lead to better clinical experience for the patients.

Web scraping not only gives healthcare professionals access to enterprise-wide information but also simplifies the process of data conversion for predictive analysis and reports. Analyzing user reviews in terms of precautions and symptoms for diseases that are incurable till date and are still undergoing medical research for effective treatments, can mitigate the fear in people. Data analysis can be based on data available with patients and is one way of creating awareness among people.

Hence, web scraping can increase the significance of data collection and help doctors make sense of the raw data. With web scraping and data extraction techniques, healthcare insurers can reduce the attempts of frauds, healthcare organizations can focus on better customer relationship management decisions, doctors can identify effective cure and best practices, and patients can get more affordable and better healthcare services.

Web scraping applications in healthcare can have remarkable utility and potential. However, the triumph of web scraping and data extraction techniques in healthcare sector depends on the accessibility to clean healthcare data. For this, it is imperative that the healthcare industry think about how data can be better recorded, stored, primed, and scraped. For instance, healthcare sector can consider standardizing clinical vocabulary and allow sharing of data across organizations to heighten the benefits from healthcare web scraping practices.

Healthcare sector is one of the top sectors where data is multiplying exponentially with time and requires a planned and structured storage of data. Continuous web scraping and data extraction is necessary to gain useful insights for renewing health insurance policies periodically as well as offer affordable and better public health solutions. Web scraping and data extraction together can process the mammoth mounds of healthcare data and transform it into information useful for decision making.

To reduce the gap between various components of healthcare sector-patients, doctors, pharmacies and hospitals, healthcare organizations and websites will have to tap the technology to collect data in all formats and present in a usable form. The healthcare sector needs to overcome the lag in implementing effective web scraping and data extraction techniques as well as intensify their pace of technology adoption. Web scraping can contribute enormously to the healthcare industry and facilitate organizations to methodically collect data and process it to identify inadequacies and best practices that improve patient care and reduce costs.

Source: https://www.promptcloud.com/blog/why-health-care-companies-should-use-web-scraping

Monday, 22 August 2016

ERP Data Conversions - Best Practices and Steps

ERP Data Conversions - Best Practices and Steps

Every company who has gone through an ERP project has gone through the painful process of getting the data ready for the new system. The process of executing this typically goes through the following steps:

(1) Extract or define

(2) Clean and transform

(3) Load

(4) Validate and verify

This process is typically executed multiple times (2 - 5+ times depending on complexity) through an ERP project to ensure that the good data ends up in the new system. If the data is either incorrect, not well enough cleaned or adjusted or loaded incorrectly in to the new system it can cause serious problems as the new system is launched.

(1) Extract or define

This involves extracting the data from legacy systems, which are to be decommissioned. In some cases the data may not exist in a legacy system, as the old process may be spreadsheet-based and has to be created from scratch. Typically this involves creating some extraction programs or leveraging existing reports to get the data in to a format which can be put in to a spreadsheet or a data management application.

(2) Data cleansing

Once extracted it normally reviewed is for accuracy by the business, supported by the IT team, and/or adjusted if incorrect or in a structure which the new ERP system does not understand. Depending on the level of change and data quality this can represent a significant effort involving many business stakeholders and required to go through multiple cycles.

(3) Load data to new system

As the data gets structured to a format which the receiving ERP system can handle the load programs may also be build to handle certain changes as part of the process of getting the data converted in to the new system. Data is loaded in to interface tables and loaded in to the new system's core master data and transactions tables.

When loading the data in to the new system the inter-dependency of the different data elements is key to consider and validate the cross dependencies. Exceptions are dealt with and go in to lessons learned and to modify extracts, data cleansing or load process in to the next cycle.

(4) Validate and verify

The final phase of the data conversion process is to verify the converted data through extracts, reports or manually to ensure that all the data went in correctly. This may also include both internal and external audit groups and all the key data owners. Part of the testing will also include attempting to transact using the converted data successfully.

The topmost success factors or best practices to execute a successful conversion I would prioritize as follows:

(1) Start the data conversion early enough by assessing the quality of the data. Starting too late can result in either costly project delays or decisions to load garbage and "deal with it later" resulting in an increase in problems as the new system is launched.

(2) Identify and assign data owners and customers (often forgotten) for the different elements. Ensure that not only the data owners sign-off on the data conversions but that also the key users of the data are involved in reviewing the selection criteria's, data cleansing process and load verification.

(3) Run sufficient enough rounds of testing of the data, including not only validating the loads but also transacting with the converted data.

(4) Depending on the complexity, evaluate possible tools beyond spreadsheets and custom programming to help with the data conversion process for cleansing, transformation and load process.

(5) Don't under-estimate the effort in cleansing and validating the converted data.

(6) Define processes and consider other tools to help how the accuracy of the data will be maintained after the system goes live.

Source: http://ezinearticles.com/?ERP-Data-Conversions---Best-Practices-and-Steps&id=7263314

Wednesday, 10 August 2016

Web Scraping Best Practices

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.
Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.
Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.
Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.
Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.
Conclusion

Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source: http://nocodewebscraping.com/web-scraping-best-practices/

Thursday, 4 August 2016

Are You Screen Scraping or Data Mining?

Are You Screen Scraping or Data Mining?

Many of us seem to use these terms interchangeably but let’s make sure we are clear about the differences that make each of these approaches different from the other.

Basically, screen scraping is a process where you use a computer program or software to extract information from a website.  This is different than crawling, searching or mining a site because you are not indexing everything on the page – a screen scraper simply extracts precise information selected by the user.  Screen scraping is a useful application when you want to do real-time, price and product comparisons, archive web pages, or acquire data sets that you want to evaluate or filter.

When you perform screen scraping, you are able to scrape data more directly and, you can automate the process if you are using the right solution. Different types of screen scraping services and solutions offer different ways of obtaining information. Some look directly at the html code of the webpage to grab the data while others use more advanced, visual abstraction techniques that can often avoid “breakage” errors when the web source experiences a programming or code change.

On the other hand, data mining is basically the process of automatically searching large amounts of information and data for patterns. This means that you already have the information and what you really need to do is analyze the contents to find the useful things you need. This is very different from screen scraping as screen scraping requires you to look for the data, collect it and then you can analyze it.

Data mining also involves a lot of complicated algorithms often based on various statistical methods. This process has nothing to do with how you obtain the data. All it cares about is analyzing what is available for evaluation.

Screen scraping is often mistaken for data mining when, in fact, these are two different things. Today, there are online services that offer screen scraping. Depending on what you need, you can have it custom tailored to meet your specific needs and perform precisely the tasks you want. But screen scraping does not guarantee any kind of analysis of the data.

Source: http://www.connotate.com/are-you-screen-scraping-or-data-mining/

Monday, 1 August 2016

Best Alternative For Linkedin Data Scraping

Best Alternative For Linkedin Data Scraping

When I started my career in sales, one of the things that my VP of sales told me is that ” In sales, assumptions are the mother of all f**k ups “. I know the F word sounds a bit inappropriate, but that is the exact word he used. He was trying to convey the simple point that every prospect is different, so don’t guess, use data to come up with decisions.

I joined Datahut and we are working on a product that helps sales people. I thought I should discuss it with you guys and take your feedback.

Let me tell you how the idea evolved itself. At Datahut, we get to hear a lot of problems customers want to solve. Almost 30 percent of all the inbound leads ask us to help them with lead generation.

Most of them simply ask, “Can you scrape Linkedin for me”?

Every time, we politely refused.

But not anymore, we figured out a way to solve their problem without scraping Linkedin.

This should raise some questions in your mind.

1) What problem is he trying to solve?– Most of the time their sales team does not have the accurate data about the prospects. This leads to a total chaos. It will end up in a waste of both time and money by selling the leads that are not sales qualified.

2) Why do they need data specifically from Linkedin? – LinkedIn is the world’s largest business network. In his view, there is no better place to find leads for his business than Linkedin. It is right in a way.

3) Ok, then what is wrong in scraping Linkedin? – Scraping Linkedin is against its terms and it can lead to legal issues. Linkedin has an excellent anti-scraping mechanism which can make the scraping costly.

4) How severe is the problem? – The problem has a direct impact on the revenues as the productivity of the sales team is too low. Without enough sales, the company is a joke.

5) Is there a better way? – Of course yes. The people with profiles in LinkedIn are in other sites too. eg. Google plus, CrunchBase etc. If we can mine and correlate the data, we can generate leads with rich information. It will have better quality than scraping LinkedIn.

6) What to do when the machine intelligence fails? – We have to use human intelligence. Period!

Datahut is working on a platform that can help you get leads that match your ideal buyer persona. It will be a complete Business intelligence platform powered by machine and human intelligence for an efficient lead research & discovery.We named it Leadintel. We’ve also established some partnerships that help to enrich the data and saves the trouble of lawsuits.

We are opening our platform for beta users. You can request an invitation using the contact form. What do you think about this? What are your suggestions?

Thanks for reading this blog post. Datahut offers affordable data extraction services (DaaS) . If you need help with your web scraping projects let us know and we will be glad to help.

Source:http://blog.datahut.co/best-alternative-for-linkedin-data-scraping/